Simulation of Adsorption Processes at Metallic Interfaces: An Image Charge Augmented QM/MM Approach.

نویسندگان

  • Dorothea Golze
  • Marcella Iannuzzi
  • Manh-Thuong Nguyen
  • Daniele Passerone
  • Jürg Hutter
چکیده

A novel method for including polarization effects within hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of adsorbate-metal systems is presented. The interactions between adsorbate (QM) and metallic substrate (MM) are described at the MM level of theory. Induction effects are additionally accounted for by applying the image charge formulation. The charge distribution induced within the metallic substrate is modeled by a set of Gaussian charges (image charges) centered at the metal atoms. The image charges and the electrostatic response of the QM potential are determined self-consistently by imposing the constant-potential condition within the metal. The implementation is embedded in a highly efficient Gaussian and plane wave framework and is naturally suited for periodic systems. Even though the electronic properties of the metallic substrate are not taken into account explicitly, the augmented QM/MM scheme can reproduce characteristic polarization effects of the adsorbate. The method is assessed through the investigation of structural and electronic properties of benzene, nitrobenzene, thymine, and guanine on Au(111). The study of small water clusters adsorbed on Pt(111) is also reported in order to demonstrate that the approach provides a sizable correction of the MM-based interactions between adsorbate and substrate. Large-scale molecular dynamics (MD) simulations of a water film in contact with a Pt(111) surface show that the method is suitable for simulations of liquid/metal interfaces at reduced computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient approach to obtain free energy gradient using QM/MM MD simulation

The efficient computational approach denoted as charge and atom dipole response kernel (CDRK) model to consider polarization effects of the quantum mechanical (QM) region is described using the charge response and the atom dipole response kernels for free energy gradient (FEG) calculations in the quantum mechanical/molecular mechanical (QM/MM) method. CDRK model can reasonably reproduce energie...

متن کامل

The implementation of a fast and accurate QM/MM potential method in Amber

Version 9 of the Amber simulation programs includes a new semi-empirical hybrid QM/MM functionality. This includes support for implicit solvent (generalized Born) and for periodic explicit solvent simulations using a newly developed QM/MM implementation of the particle mesh Ewald (PME) method. The code provides sufficiently accurate gradients to run constant energy QM/MM MD simulations for many...

متن کامل

Numerical Study of Electro-thermo-convection in a Differentially Heated Cavity Filled with a Dielectric Liquid Subjected to Partial Unipolar Injection

The Coulomb force applied by an electric field on any charge present in a dielectric liquid may cause fluid motion. At high applied electric fields in an insulating liquid, electric charge carriers are created at metallic/liquid interfaces, a process referred to as ion injection, and result from electrochemical reactions. In this article we deals with the problem of electro thermal convection i...

متن کامل

Selection and Validation of Charge and Lennard-Jones Parameters for QM/MM Simulations of Hydrocarbon Interactions with Zeolites.

Quantum mechanics/molecular mechanics (QM/MM) models are an appealing method for performing zeolite simulations. In QM/MM, a small cluster chosen to encompass the active center is described by QM, while the rest of the zeolite is described by MM. In the present study, we demonstrate that the charges and Lennard-Jones parameters on Si and O must be chosen properly for QM/MM calculations of adsor...

متن کامل

A Computational Study on the Aerobic Oxidation of Benzene to Phenol in Cu/Exchanged Y Zeolite

In heterogeneous catalysis transition metal-containing zeolites, in particular copperexchanged zeolites, have been studied experimentally [1, 2] as well as theoretically. Zeolites have large surface areas and different active sites (Brønsted acid sites and transition metal centers) which play a significant role in catalysis. In order to study the catalytic oxidation of benzene to phenol using d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 9 11  شماره 

صفحات  -

تاریخ انتشار 2013